
Server Farm to Table
(or, how the Internet works)

Jenna Zeigen
@zeigenvector

So, what *does* happen when you type www.google.com into the browser?

Server Farm to Table
(or, how the Internet works)

Jenna Zeigen
@zeigenvector

hey, sup?

nm, u?

Jenna Zeigen • @zeigenvector

The OSI model is a really good way of thinking about processes like these. It details seven

layers, from Layer 1 which talks about physical bits in the computer, through Layer 7, which is
the full application layer, so things like the browser. This talk is going to start at Layer 4, which is

transport. We won’t be talking about anything lower than that, so no networking, though I’m
sure there’s plenty of stuff all over the Internet if you want to learn more about those lower

layers.

Jenna Zeigen • @zeigenvector

1. IP Address Lookup
2. Opening a socket
3. Security Stuff
4. HTTP Request
5. Server Things
6. HTTP Response
7. Parsing
8. Rendering

Overview
I’m going to go through all of these and talk about optimizations along the way!

Jenna Zeigen • @zeigenvector

IP Address Lookup
You know my name,
Look up the number

♪♪♪

To do anything, we need to map the human readable URL “www.google.com” to the address

of a computer to “talk to.”

Jenna Zeigen • @zeigenvector

IP Address Lookup

Hey, I just met you
This is easy

I still know your number
Super breezy!

♪♪♪

First, the browser checks its cache.

IP Address Lookup

Is this name special?
So very special?

♪♪♪

If not found, the browser calls the gethostbyname library function, the contents of which vary
by OS, to do the lookup. This function checks if the hostname is listed in the local hosts file, the

location of which also varies by OS. On Macs, it’s at /etc/hosts. This is how your computer
knows what localhost should resolve to. If you wanna check it out, you can type cat /etc/

hosts into your terminal and see what’s in there!

IP Address Lookup

Nope!

If gethostbyname does not have it cached and can’t find it in the hosts file, then it makes a

request to the DNS server configured in the network stack. This is typically the ISP's caching
DNS server, but you could configure your computer to use any DNS server, i.e. Google’s

(8.8.8.8) if you wanted…

IP Address Lookup

You weren’t asking
me, but I know
where that is!
173.194.46.84!

Do you have
a www.google.com?

The browser then kicks off a request to get the IP address for www.google.com, which goes

through the local router, which also checks its cache.

IP Address Lookup

Do you have
a www.google.com? <LANsplaining>

(Big thanks to @jedschmidt for this witty commentary)

Jenna Zeigen • @zeigenvector

IP Address Lookup

Do you have
a www.google.com?

If the local router doesn’t have anything cached, the browser ends up hitting the local ISP DNS

server. This process uses UDP (User Datagram Protocol), or TCP if the request is too large.
Communications protocols are ways that entities transmit information among them, and we’ll

hear more about TCP later.

UDP is kind of like the smallest bit of network you can use. It’s great for unidirectional
transactions, but delivery is not guaranteed in any order, or guaranteed at all. It’s kind of like if

you were to through a bunch of balls at someone and hope that they catch them.

Jenna Zeigen • @zeigenvector

IP Address Lookup
Got a long list of these numbers
But if it’s not in my “brain”

I’ll ask some servers
And we’ll find it by name

♪♪♪

Upon receiving the request, the DNS server first checks its cache.

Jenna Zeigen • @zeigenvector

IP Address Lookup

Hold on, lemme
phone a friend…

Do you have
a www.google.com?

If it doesn’t have the address in its cache, it recursively looks up the address by asking some
more servers…

Jenna Zeigen • @zeigenvector

IP Address Lookup
You go talk to your friends,

talk to more friends,
talk to me

♪♪♪

(Meanwhile, the client has to wait a while for the answer…)

Jenna Zeigen • @zeigenvector

IP Address Lookup

Do you know where
www.google.com is?

Jenna Zeigen • @zeigenvector

IP Address Lookup

No, but maybe ask
“.com”?

Do you know where
www.google.com is?

Jenna Zeigen • @zeigenvector

IP Address Lookup

Do you know where
www.google.com is?

Jenna Zeigen • @zeigenvector

IP Address Lookup

Do you know where
www.google.com is?

No, but maybe ask
“google.com”?

Jenna Zeigen • @zeigenvector

IP Address Lookup

Do you know where
www.google.com is?

Jenna Zeigen • @zeigenvector

IP Address Lookup

Yep!
173.194.46.84!

Do you know where
www.google.com is?

Jenna Zeigen • @zeigenvector

IP Address Lookup
Say you'll remember me

Or at least this IP address
So we don’t have to relive this mess

♪♪♪

When the name server comes back to the DNS server with the IP address answer, it will also

come back with a TTL (time to live), an amount of time that the DNS server should cache the IP
address. The longer the TTL, the faster this process, but then it’s harder to change things.

Historically, this TTL was 24 hours, which is why it could take up to 24 hours for the URL
corresponding to an IP to change.

Jenna Zeigen • @zeigenvector

IP Address Lookup

Yep!
173.194.46.84!

The DNS server then responds to the client with the found IP address.

Jenna Zeigen • @zeigenvector

IP Address Lookup

I will remember youuuuu
♪♪♪

The client then caches the IP address for next time. Some browsers also have their own DNS

cache.

Jenna Zeigen • @zeigenvector

IP Address Lookup

I dig it.

If you want to check out this process hands-on, you can use the dig command in your terminal.

Jenna Zeigen • @zeigenvector

Opening a socket
Gonna use that TCP

Whatcha gonna send to me
Gonna use that TCP
Take care, TCB

Oh socket to me, socket to me
Socket to me, socket to me

♪♪♪

Once the client has the IP address, it takes it and the port number from the URL, and makes a
call to the system library function named socket and requests a TCP socket stream. We don’t

usually see port numbers on the end of URLs, but the HTTP protocol defaults to Port 80, and
HTTPS to Port 443.

Jenna Zeigen • @zeigenvector

Opening a socket
'Cause I’m on the network

getting packets
You’re sending me three-

hundred and five
♪♪♪

TCP stands for “Transmission Control Protocol.” Unlike UDP, its job is to deliver a reliable,

ordered, and error checked stream of packets across the network. It’s more like a game of
catch, to continue the ball metaphor. In fact, it’s often called the “TCP handshake”. TCP is the

protocol that underlies HTTP, TLS, FTP, email, and SSH.

Jenna Zeigen • @zeigenvector

Opening a socket

Hey! Will you
talk to me?

The client then establishes TCP connection(s) with the server. It’s kinda like this…

Jenna Zeigen • @zeigenvector

Opening a socket

Hey! Will you
talk to me?

Sure!

Jenna Zeigen • @zeigenvector

Opening a socket

Hey! Will you
talk to me?

Sure!

Sweet.

Jenna Zeigen • @zeigenvector

Opening a socket

SYN

Well, more specifically like this…

1. The client sends a SYN packet with a randomly-selected sequence number “x”

Jenna Zeigen • @zeigenvector

Opening a socket

SYN-ACK.

SYN

2. The server replies with a SYN-ACK packet with an acknowledgement number set to “x+1”
and a different randomly-selected sequence number “y”

Jenna Zeigen • @zeigenvector

Opening a socket

SYN-ACK.

ACK.

SYN

3. The client responds with an ACK packet, with the sequence number set to the received

acknowledgement number “x+1”, and a new acknowledgement number set to “y+1”

Jenna Zeigen • @zeigenvector

Opening a socket

SYN-ACK.

ACK.

SYN

To prepare for the likely event that the client is going to need more things from the server,

more than one connection will be opened.

Jenna Zeigen • @zeigenvector

Opening a socket
The bigger you send,
The harder you fall

Take it from me, girl,
You gotta start small

♪♪♪

TCP also has congestion control— requests start small and ramp up in size to make sure the
network can support the requests. This is more of a relic from the past when networks weren’t

as reliable or fast. TCP is where much of the latency in this entire process comes from, as it’s
constrained by the speed of light. This is why it is advantageous to serve assets from a server as

close to your user as possible by using a CDN.

Jenna Zeigen • @zeigenvector

Opening a socket
If you want to check out TCP for yourself, you can use tcpdump from your terminal. tcpdump

will show you all the network traffic, which is why you see UDP packets here. If you prefer a GUI
option, you can also use Wireshark.

Jenna Zeigen • @zeigenvector

Security Stuff

After all this goes down,
I know that we'll be safe and sound

♪♪♪

If the request is over HTTPS, we need another step to ensure the security of the transaction.

HTTPS uses TLS, or Transport Layer Security. TLS’s predecessor was Secure Sockets Layer (SSL).

Jenna Zeigen • @zeigenvector

Security Stuff

ClientHello! It's me,
I wish to make this exchange safe

And hope that you’ll agree
♪♪♪

To kick of the process, the client computer sends a ClientHello message to the server with its
TLS version, list of cipher algorithms and compression methods available.

Jenna Zeigen • @zeigenvector

Security Stuff
ServerHello from the other side!

Here’s a certificate and public key!
Let’s try!

♪♪♪

The server replies with a ServerHello message to the client with the TLS version, selected

cipher, selected compression methods and the server's public certificate. The certificate
contains a public key that will be used by the client to encrypt the rest of the handshake until a

symmetric key can be agreed upon.

Jenna Zeigen • @zeigenvector

Security Stuff

Secret
message

The client verifies the server digital certificate. If trust can be established, the client generates a

string of pseudo-random bytes and encrypts this with the server's public key.

Jenna Zeigen • @zeigenvector

Security Stuff

Decrypting
secret
message

Secret
message

The server then decrypts the message and uses it to create its own version of the symmetric
key.

Jenna Zeigen • @zeigenvector

Security Stuff

Finished

The client sends a Finished message to the server, encrypting a hash of the transmission up to

this point with the symmetric key.

Jenna Zeigen • @zeigenvector

Security Stuff

Finished

Finished

The server generates its own hash, and then decrypts the client-sent hash to verify that it

matches. If it does, it sends its own Finished message to the client, also encrypted with the
symmetric key.

Jenna Zeigen • @zeigenvector

HTTP Request
You, you got what I need,

It’s that page, hey, can you send?
It’s that page, hey, can you send?

Maybe?
♪♪♪

With all this done, the client is ready to send an HTTP request to the server. HTTP stands for
“HyperText Transfer Protocol.” Unless the client and server negotiate using a more advanced

version of HTTP, they’re going to use HTTP/1.1.

HTTP/1.1 is stateless, uses a request/response model, and is a plain-text protocol.

Jenna Zeigen • @zeigenvector

HTTP Request

> GET / HTTP/1.1
> Host: google.com
> Connection: close
> [other headers]

The client will send an request like this, containing the request and headers, followed by a

single blank newline to the server indicating that the content of the request is done.

Jenna Zeigen • @zeigenvector

Server Things…

Look inside
It’s where my daemon hides

♪♪♪

The server then processes the request. The HTTPD (HTTP Daemon) server is the one handling

the requests and responses on the server side. Some popular HTTPD servers are Apache and
nginx.

Jenna Zeigen • @zeigenvector

Server Things…

I got racks on
racks on racks

♪♪♪

The server is going to do a bunch of “server stuff” including load balancing, routing, and
database calls.

Jenna Zeigen • @zeigenvector

Server Things…

Whatcha, whatcha,
whatcha want?

(Whatcha want?)
♪♪♪

The server breaks down the request to the following parameters:

1. HTTP Request Method (either GET, POST, PUT, etc.). In this case, with a URL entered directly
into the address bar, this will be GET.

2. Domain. In this case the domain is “google.com.”
3. Requested path/page. In this case, the path is “/“ because no specific path or page was

requested (/ is the default, root path, just like in the Unix file system).

Jenna Zeigen • @zeigenvector

HTTP Response

 < HTTP/1.1 304 Not Modified
 [other headers]

If you’ve been to this site before, and the HTTP headers sent by the web browser included

sufficient information for the server to determine if the version of the file cached by the web
browser has been unmodified since the last retrieval, it may instead respond with something

like this.

This is so much less work for the client and server at this point, but is the result of author work,
making sure that the proper mechanisms are in place for the required data to be transmitted.

Jenna Zeigen • @zeigenvector

HTTP Response
Sorry, we had to change to that code

Updated that file and then changed its number
I guess you need the new stuff though

Now it’s just some page that you used to know
♪♪♪

For example, having ETags in the header will allow the server to determine if the cached
version of a page is still valid. The first time the server sends the page, it will send an ETag, a

unique identifier for the version of the page, in the header of the response. The client will then
cache this. The next time the client needs this page, it will get the ETag from it’s cached version

and send it to the server. If the ETags match, the server will send the 304 Not Modified
status code.

Jenna Zeigen • @zeigenvector

HTTP Response
All this HTML

I will send to you
All this HTML

You’ll know what to do
♪♪♪

If they don’t match, then there’s much more to be done. The server has to then send over a

much bigger payload.

Jenna Zeigen • @zeigenvector

HTTP Response
 < HTTP/1.1 200 OK
 [other headers]
 <
 <doctype !html><html>…</html>

An otherwise successful request and smooth servering process will prompt the server to send a

response like this, with a 200 OK status code, other headers, a single blank newline, and then
the payload, which in this case is the entire HTML document.

Jenna Zeigen • @zeigenvector

HTTP Response
It didn’t work, work,
work, work, work, work!

♪♪♪

If something went wrong, you could also get less-happy status codes. The 400-series
represents a client error like 403 Forbidden or 404 Not Found. The 500-series represents

server errors, such as the 500 Internal Server Error.

Jenna Zeigen • @zeigenvector

HTTP Response
If you want to investigate what’s going on in an HTTP request, you can use curl from your

terminal.

Jenna Zeigen • @zeigenvector

HTTP Response

My curl, my curl, my curl
Talkin' 'bout my curl.

My curl!
♪♪♪

Jenna Zeigen • @zeigenvector

HTTP Response
Shrink it down,

gzip it
(Don’t reverse it…)

♪♪♪

With HTTP, the size of the request directly correlates to the time it takes to finish the request.
Because of this, compression helps a lot to get your page to the user as fast as possible. Gzip is

most popular compression method for these web things. Gzip works by replacing repeated
substrings with references to where the decompressor can find that substring, and this is great

for HTML (think of how many times div appears in an HTML document! In fact, gzipping
generally reduces the response size by about 70%.

Jenna Zeigen • @zeigenvector

HTTP Response

These are my compressions
♪♪♪

And if you’re worried your users don’t have this fancy compression method enabled in their

browsers, the server and client talk about using gzip beforehand to make sure it’s safe. And
about 90% of today's Internet traffic travels through browsers that claim to support gzip

anyway.

(Thanks to @jamessocol for this one)

Jenna Zeigen • @zeigenvector

HTML Parsing

We did everything right,
Bytes are on the client side

♪♪♪

As soon as the browser starts receiving bytes, it starts parsing it. It usually receives it in 8kB

chunks, and feeds those bytes right into the parser.

Jenna Zeigen • @zeigenvector

HTML Parsing

Are you listening? (Whoa-oh-oh-oh-oh)
Please come back. (Whoa-oh-oh-oh-oh)

I’ll tell you what do I need
I’ll tell you what do I need

Whoa-oh, whoa-oh
♪♪♪

Before the formal parsing for rendering, the bytes get passed through a speculative parser, or
look-ahead pre-parser. This parser looks ahead for external resources like JS, CSS, and image

files so it can start getting them from the server immediately. If it finds them, it’ll use the extra
TCP requests, if they’re from the same host. Otherwise, the client has to do the whole DNS

dance again. This optimization wasn’t always in the stack, but when released, improved page
load performance by about 20%.

Jenna Zeigen • @zeigenvector

HTML Parsing

I begin to parse,
To split the text apart

Break it down into sections
Tokens into selectors

♪♪♪

Meanwhile, the bytes are fed into the primary parser.

Jenna Zeigen • @zeigenvector

HTML Parsing

bytes characters tokens nodes DOM

The parsing algorithm is described in detail by the HTML5 specification. It goes something like

this:
1. The browser reads the raw bytes of the HTML off the disk or network and translates them to

individual characters based on specified encoding of the file, e.g. UTF-8.
2. The characters get broken up into tags, e.g. html, head, and div.

3. The tags then then get made into nodes.
4. The nodes are then arranged into the DOM tree.

Jenna Zeigen • @zeigenvector

HTML Parsing

document

html

head body

divtitle

h1 p

“Kitties!” “Cats!”

After this process, you end up with a DOM (Document Object Model) tree made from the
HTML document. It has an almost one-to-one relationship with the markup.

Jenna Zeigen • @zeigenvector

HTML Parsing

Stop! Grammar time!
♪♪♪

Most programming languages have a vocabulary described using regular expressions and a

syntax described by a context-free grammar. A context-free grammar means there is a set of
production rules that describe all possible strings in the language. Production rules are simple

replacements that can be applied regardless of context.

(Photo credit: https://www.flickr.com/photos/andrewrusk/5599576288)

Jenna Zeigen • @zeigenvector

HTML Parsing

Whatever, wherever
I’m gonna make it render!

♪♪♪

HTML isn’t defined by a context-free grammar and therefore cannot be parsed by a “regular”

parser. This is because HTML is designed to be more forgiving of human error— the spec
requires the parser to be 100% fault-tolerant. This is why you never see an HTML syntax error. It

will always render something (but sometimes it’s not *exactly* what you wanted…). Thus, a lot
of the parser’s code is for fixing the HTML author mistakes, like invalid tags, unclosed tags,

incorrect nesting.

Jenna Zeigen • @zeigenvector

HTML Parsing
Yeah, my momma she told me
Don't worry about your size

She says I’m this big ‘cause sometimes
humans just aren’t so bright

♪♪♪

This means the parser will never error, but it also means that browsers makers have to create
custom parsers. Browsers are like a million lines of C++, and a big chunk is related to this

parser.

Jenna Zeigen • @zeigenvector

HTML Parsing

Sending out some CSS
Sending out some CSS

♪♪♪

As the parser is parsing, it runs into inlined assets like images, scripts, and stylesheets. The

client must then request each asset and wait for the server to send it back. Hopefully the
speculative parser has already started the fetching process!

Jenna Zeigen • @zeigenvector

HTML Parsing

Assets come quickly,
The execution of all things

♪♪♪

 Once the browser has the asset, it then must parse and execute it before anything continues.

Jenna Zeigen • @zeigenvector

Asset Downloading

There’s only so much I can do
All else goes in the queue

♪♪♪

The big hiccup here is that browsers have imposed limits on how many parallel downloads you
can have from the same domain. It used to be 2, but now that limit is anywhere from 6 to 13 in

modern browsers, depending on the browser. This is a huge bottleneck, but many of the
optimizations we hear about stem from trying to get around this. One thing you can do here is

to serve your images from multiple hostnames, you can get around the same hostname parallel
download limit.

Jenna Zeigen • @zeigenvector

Asset Downloading
Pull it down, I'm yelling timber
Unless it moves or gets enhanced
This data, I’m told to remember

Until it tells me to forget
♪♪♪

Caching also comes into play here, because TTL in this case is determined by the headers sent

with the asset, such as a far-future Expires header. This helps because the file does not need to
be downloaded again, therefore not contributing to the download limit.

Jenna Zeigen • @zeigenvector

Asset Downloading

Come together, right now
Up the speed

♪♪♪

Another popular optimization is to combine your files together. This includes concatenating

JavaScript and CSS files together using a tool like webpack, Gulp, or even the asset pipeline.
However, this might come back to bite you with caching because overtime you change just one

file in your bundle, the cache gets invalidated. Because of this, some developers have two
bundles— one for application code that is likely to change often and one for vendor code that

is less likely to change.

Jenna Zeigen • @zeigenvector

Asset Downloading

Yeah, it's always better
when they’re together

♪♪♪

Another thing you can do is make CSS sprites or icon fonts so there aren’t so many small
images each with their own requests.

Jenna Zeigen • @zeigenvector

Asset Downloading

Harder, Better,
Faster, Smaller

♪♪♪

Still, with referenced assets the size of the request affects the time it takes to download, so you

want your requested files to be as small as possible. This takes some effort on the part of the
developer.

Jenna Zeigen • @zeigenvector

Asset Downloading
Got some files to send over
And their length’s insane
Remove the whitespace, baby

It’ll up your game
♪♪♪

One thing you can do is minify all your HTML, CSS, and JavaScript. While it’s good to write your

code for humans with whitespace and comments, computers don’t care about all of this.
Minification gets rid of all the stuff we put in code for humans.

Jenna Zeigen • @zeigenvector

Asset Downloading
Well I know that

I'll get through this
'Cause I know that I am smart

I don't need you anymore
I don't need you anymore
I don't need you anymore

No I don't need you anymore…
♪♪♪

Carefully consider the impact of libraries and frameworks on both site size and developer
productivity. Not every project needs a framework. If you do, choose carefully. Consider at least

the total cost on size and initial parse times before choosing an option.

On a smaller scale, libraries have split what was previously a monolith into discrete modules.
Right now I’m thinking of LoDash but there are likely others. Taking LoDash as an example, it’s

likely you’re not using every single module it has to offer, so import only what you’re using and
not the entire library.

Jenna Zeigen • @zeigenvector

Asset Downloading
Shake it, shake it, shake it,
Shake it, shake it, shake it,
Shake it, shake it, shake it
Shake it like a JavaScript

bundle
Hey ya!
♪♪♪

Tree-shaking is also a good way to reduce the size of the files you’re sending over the wire.

Tree-shaking is a method for dead-code elimination, though Rich Harris, the developer of
Rollup, the module bundler that re-popularized the term in the JS community, prefers to call it

“live code inclusion”. To do this, module bundlers like Webpack and Rollup rely on
the import and export statements in ES2015 to detect if code modules are exported and

imported for use between JavaScript files. It goes through and figures out which code is going
to get used and includes only that in the bundle.

Jenna Zeigen • @zeigenvector

Asset Downloading

All the small things
What speed this brings!

♪♪♪

Optimizing images is also important. JPEGs can be huge, especially for mobile devices, and

SVGs especially have extra information put in by the program that made the SVG such as
Sketch or illustrator, as well as whitespace like we removed from our earlier files though

minification. Running these images through an optimizer such as svgo or TinyPNG removes
extra information like the whitespace from SVGs, or extra data from JPEGs and PNGs that we

humans will never notice. SVGs can should also be gzipped.

You also should to make sure you’re using the right image type for the style of image. Vector

graphics, i.e. SVGs, are all the rage these days, but they are best for simple, geometric
illustrations like line drawings. Raster images, like JPEGs and PNGs, are generally bigger files

Jenna Zeigen • @zeigenvector

Asset Downloading

Baby I don't need fancy glyphs
To have a good site
(Yay system fonts!)

♪♪♪

Use system fonts if you can! If it's not the case, chances are high that the web fonts you are
serving include glyphs and extra features and weights that aren't being used. You can ask your

type foundry to subset web fonts or subset them yourself (i.e. include only Latin with some
special accent glyphs) if you are using open-source fonts to minimize their file sizes.

Jenna Zeigen • @zeigenvector

HTML Parsing
So I don’t take the fall
Of a document.write call

When I see you, everything stops
Never put JS on top

♪♪♪

<head>
<script src="library.js"></script>
<link href="styles.css">
<script src=“website.js”></script>

</head>
<body></body>

As the parser is doing its parsing and it runs into a JavaScript include, further parsing stops.

This is because JavaScript has the ability to manipulate the DOM, using document.write,
and any HTML that gets added must be fed back into the main parser. The parsing of the

document halts until the script has been downloaded, if necessary, and executed. While a script
is downloading, the browser won't start any other downloads, even on different hostnames.

Jenna Zeigen • @zeigenvector

HTML Parsing
Scripts go at the bottom

Not up here
Scripts go at the bottom

So the whole page freakin’ here
 ♪♪♪

This explains the common optimization of putting scripts at the bottom of the page, right

before </body>. Thus, when this blocking inevitably occurs, all the good things have already
happened and you’re well on your way to a render!

Jenna Zeigen • @zeigenvector

HTML Parsing

<head>
<script defer src="library.js"></script>
<link href="styles.css">
<script src=“website.js”></script>

</head>
<body></body>

We can’t stop…
♪♪♪

There are also spec-approved ways to get around this blocking too. Authors can add a "defer"
attribute to a script tag, in which case it will not halt document parsing and will execute only

after the document is parsed.

Jenna Zeigen • @zeigenvector

HTML Parsing

<head>
<script async src="library.js"></script>
<link href="styles.css">
<script src=“website.js”></script>

</head>
<body></body>

And we won’t stop…
♪♪♪

HTML5 adds an another option, to mark the script as asynchronous with the async attribute so

it will be parsed and executed by a different thread, in parallel. With this, you’re kinda
promising you won’t call document.write, or you’re okay with it getting thrown out the

window. (that was an attempt at a DOM pun…)

Jenna Zeigen • @zeigenvector

HTML Parsing

<head>
<script src="library.js"></script>
<link href="styles.css">
<script src=“website.js"></script>

</head>
<body></body>

Stop right now
Thank you very much

I need all the CSS downloaded and such
♪♪♪

CSS also does its own kind of blocking. It might seem that since CSS doesn’t change the DOM

tree, there’s no reason to wait for it and stop the document parsing. There is an issue, though,
of scripts asking for style information during the document parsing stage. If the styles aren’t

loaded and parsed yet, the scripts will get wrong answers and apparently this has caused lots of
problems. It seems to be an edge case but is quite common.

Different browsers have different ways of dealing with this blocking though. Firefox blocks all

scripts when there is a stylesheet that is still being loaded and parsed. WebKit blocks scripts

only when they try to access certain style properties that may be affected by unloaded
stylesheets.

Jenna Zeigen • @zeigenvector

CSS Parsing

bytes characters tokens nodes CSSOM

This parser’s young and wild and
context-free

♪♪♪

Just like with HTML, the browser needs to convert the CSS file into something it can work with.
Instead of making a DOM tree though, it makes a CSSOM tree! The CSS parser, unlike the

HTML parser, is context-free, though the steps in the process are largely the same.

Jenna Zeigen • @zeigenvector

CSS Parsing

body

div

h1 p

font-size: 16px

font-size: 16px
font-weight: bold

font-size: 16px
color: blue

font-size: 16px
float: left

‘Cause we know how to style
We know how to style

♪♪♪

The tree data structure is well-suited for CSS because of the recursive nature of style

application, the “cascade.” It should be noted that the CSSOM tree only includes overrides to
the browser’s default stylesheet, so things that are included in the application’s stylesheet and

inlined in the HTML.

Jenna Zeigen • @zeigenvector

CSS Parsing
CSS, take it easy

For there is something
that we can do.
CSS, take it easy

BEM it on me
Or BEM it on you.

♪♪♪

Reducing CSS selector complexity is one more step you can take to improve performance, and

using a CSS methodology is one way to help control selector nesting. The “deeper” the styles
go, the longer it takes the browser to figure out if there’s a match for the rule it’s currently

looking at. Many of the popular methodologies rely on giving each element that need to be
styled a single class based on strict naming rules so it’s easy for the browser to figure out if a

rule should be applied or not. Some of these methodologies are BEM, SMACSS, SUIT, and
OOCSS.

Jenna Zeigen • @zeigenvector

HTML Parsing

<head>
<script src="library.js"></script>
<link href="styles.css">
<script src=“website.js"></script>

</head>
<body></body>

✓

Keep on parsing
‘Til the page ends

♪♪♪

So, once the CSS is done, the JavaScript can definitely continue to load.

Jenna Zeigen • @zeigenvector

HTML Parsing

<head>
<script src="library.js"></script>
<link href="styles.css">
<script src=“website.js"></script>

</head>
<body></body>

✓
✓

Keep on parsing
‘Til the page ends

♪♪♪

Successive assets then can be downloaded and parsed.

Jenna Zeigen • @zeigenvector

JavaScript Parsing
Scripty’s now an abstract syntax tree
Thanks, smart parser (smart parser!)

The next step is the baseline
compiler

It made bytecode (it made bytecode!)
Next thing you know

Scripty got low-low-low-low-low-low-
low-low
♪♪♪

JavaScript is also context-free and can use a regular parser, but browsers these days make it

more complicated in order to optimize the process. V8, the JavaScript engine in Chrome, uses
two parsers—eager and lazy — to eventually create an abstract syntax tree (AST) and scope

structure. The eager parser is the full parser used to parse functions for compilation. It builds an
AST, as well as scope structures and finds all syntax errors. The lazy parser is also called the pre-

parser. It skips over functions that shouldn’t be compiled yet. It doesn't build an AST. It does
build scopes, but doesn’t process them fully. It also only finds a limited set of errors.

The AST and scope structures get fed into a baseline compiler and turned into low-level code.
In the case of V8, a bytecode generator walks the AST and scope structure and turns it into

Jenna Zeigen • @zeigenvector

JavaScript Parsing
Interpreted by Ignition

Your code coming to fruition
♪♪♪

The low-level code then gets executed. In V8, the bytecode is then executed by the interpreter,
called Ignition in V8

Jenna Zeigen • @zeigenvector

JavaScript Parsing

Who can say where that byte goes
Turbofan does, at runtime

And who can say if your code flows
Turbofan knows, just-in-time

♪♪♪

The bytecode also gets fed to the optimizing compiler, which recompile’s functions that get

used a lot and are worth speeding up. In V8, there is only one optimizing compiler, called
Turbofan. Because JavaScript has a just-in-time (JIT) compiler, the code gets compiled at

runtime and information used from initial runs is fed back to the compiler and is used to speed
up the function with the assumption it will continue to handle cases similar to what it has

already seen

Jenna Zeigen • @zeigenvector

HTML Parsing

<head>
<script src="library.js"></script>
<link href="styles.css">
<script src="website.js"></script>

</head>
<body></body>

✓
✓

✓

Closing tag…
♪♪♪

Eventually, the whole document will be fed into the parser and made into DOM tree.

Jenna Zeigen • @zeigenvector

Rendering

+
document

html

head body

divtitle

h1 p

“Kitties!” “Cats!”

body

div

h1 p

font-size: 16px

font-size: 16px
font-weight: bold

font-size: 16px
color: blue

font-size: 16px
float: left

=

RenderView

Scroll

Block

Block

Block

Block Block

Text Text

While it’s important to download all the assets in the right order, rendering is just as integral a
job for the browser. To kick off rendering the page, CSSOM and DOM trees are combined into

a render tree, which is then used to compute the layout of each visible element and serves as
an input to the paint process which renders the pixels to screen.

Jenna Zeigen • @zeigenvector

Rendering

+
document

html

head body

divtitle

h1 p

“Kitties!” “Cats!”

body

div

h1 p

font-size: 16px

font-size: 16px
font-weight: bold

font-size: 16px
color: blue

font-size: 16px
float: left

RenderView

Scroll

Block

Block

Block

Block Block

Text Text

=

Because of this, HTML and CSS are both render-blocking resources, which means that the

browser will hold rendering of any processed content until the DOM and CSSOM trees are
constructed.

Jenna Zeigen • @zeigenvector

Rendering
Well, I'm gonna paint my picture
Paint myself in blue and red and

green and… a
All of the beautiful pixels
are very, very meaningful

♪♪♪

The idea behind a lot of the performance tricks is to allow us to create a render tree as soon as

possible. This process has come to be known as “optimizing the critical rendering path”. The
metric that measures this has come to be called the “Time to first meaningful paint.”

Jenna Zeigen • @zeigenvector

Rendering
In your <head>
In your <head>

Stylesheet, stylesheet,
eet, eet, eet

 ♪♪♪

This is one reason why stylesheets are supposed to go at the top of your HTML document, in
<head>. Putting stylesheets near the bottom of the document prohibits progressive rendering

in many browsers. These browsers block rendering to avoid having to redraw elements of the
page if their styles change. From a UX perspective, this to avoid the flash of unsettled content.

If that’s not enough of a reason, the HTML specification clearly states that stylesheets are to be
included in <head>, so…

Jenna Zeigen • @zeigenvector

Rendering

Critical styles inlined
To make this

Page load streamlined
♪♪♪

Within the past few years, it’s becoming more common to inline critical CSS into the head of

the document, and experts say that this will get you the best performance. Critical CSS is the
minimum blocking set of CSS that we need to make the page appear to a user. The idea here is

that that we should prioritize everything that will get the first screen’s worth of content to the
user, also called the “above the fold” content, within the first few TCP packets. By inlining the

CSS, you are cutting out the time otherwise needed for a round-trip to grab a styles. Due to the
limited size of packets exchanged that early in a TCP transaction, your critical CSS budget is

around 14KB.

document

html

head body

divtitle

h1 p

“Kitties!” “Cats!”

Jenna Zeigen • @zeigenvector

Rendering

RenderView

Scroll

Block

Block

Block

Block Block

Text Text

Elements in the render tree correspond to elements in the DOM tree, but it’s not 1:1. The

render tree only includes things to be rendered, so no non-visual DOM elements like
<script> or elements with the style display: none. Elements with the style visibility:

hidden will be in the render tree, because it leaves the space for it.

Jenna Zeigen • @zeigenvector

Rendering
Cause the render’s gonna…

rend, rend, rend?
♪♪♪

RenderView

Scroll

Block

Block

Block

Block Block

Text Text

While the render tree contains information about what nodes are visible and computed styles,
we haven’t yet figured out where all these elements are supposed to go or how big they’re

supposed to be. This is all part of the “layout” process, also called “reflow.”

Layout is a recursive process, starting at the root renderer, which corresponds to the <html>
element of the HTML document. The browser traverses the render tree and calculates each

node’s position and size within the device’s viewport. In this phase, all relative measurements
are converted to exact pixel locations on the screen. All renderers have a "layout" or "reflow"

method which lays out itself and invokes the layout method of its children that need layout.

Jenna Zeigen • @zeigenvector

Rendering
Cause the render’s gonna…

rend, rend, rend?
♪♪♪

RenderView

Scroll

Block

Block

Block

Block Block

Text Text

In order not to do a full layout for every small change, browsers use a "dirty bit" system. A

renderer that is changed or added marks itself and its children as “dirty”, which just means that
it needs laying out. There are actually two flags: "dirty" and "children are dirty.” The latter

means that while the actual renderer may be “clean,” it has at least one child that needs a
layout.

Layouts can be either global or incremental. Incremental layouts are done in async batches

based on a timer in the browser.

Jenna Zeigen • @zeigenvector

Rendering
And the painter’s gonna
paint, paint, paint…

♪♪♪
RenderView

Scroll

Block

Block

Block

Block Block

Text Text

Once we know the location and dimensions of all the elements in the render tree, we can then

start representing everything as pixels on the page — painting! In the painting stage, the
render tree is traversed recursively and the renderer’s “paint” method is called to display the

content. This process involves the browser making layers from the bottom up in twelve phases,
determining what color to paint each pixel. the paint process creates a bitmap for each layer

Like layout, painting can also be global or incremental, where only dirty regions are repainted.

This is where “region-specific repainting” comes from!

Jenna Zeigen • @zeigenvector

Rendering
And the GPU’s gonna

composite, composite…
♪♪♪

RenderView

Scroll

Block

Block

Block

Block Block

Text Text

Then the bitmaps are handed to the GPU for compositing (or more technically: smushing all the
layers together).

This whole process can occur at 60 frames per second, which happens to also be the frame rate

of human vision, or “flicker fusion rate of cones”. You might have also heard this as every 16.66
ms.

Jenna Zeigen • @zeigenvector

HTML Parsing

Whoa, oh, oh, oh, oh
Whoa, oh, oh, oh,
DOM’s interactive
DOM’s interactive

♪♪♪

When the HTML document is fully downloaded and parsed, the page is marked as

“interactive” and the DOMContentLoaded event is fired, without waiting for all the assets
to finish loading. At this point, you can click around the page— it’s interactive!

Jenna Zeigen • @zeigenvector

HTML Parsing
Now that that was fired,

fired, fired,
We can load scripts marked

defer, ‘fer, ‘fer
♪♪♪

At this point, scripts marked with the defer attribute are executed.

Jenna Zeigen • @zeigenvector

HTML Parsing
In your eyes

The light, the heat
In your eyes

The DOM’s complete
♪♪♪

Finally, once every resource has been downloaded and parsed, the document is marked as
complete, and the load event is fired.

Jenna Zeigen • @zeigenvector

Rendering
Loop loop ba-doop loop ba-doop

Loop ba-doop ba-doop
Ba-doop loop ba-doop loop

Ba-doop loop ba-doop, ba-doop,
ba-doop
♪♪♪

But websites these days are interactive. Users will click and drag and type, and pieces will

change. And the browser must update based on these interactions.

But renders are constrained by the speed of your JavaScript. JavaScript is single-threaded,
running on the browser’s main thread along with all the style, layout, and painting calculations.

Everything that gets called in JavaScript goes onto the stack. Synchronous calls go right on,
and asynchronous callbacks, like those from Web APIs, get thrown into a callback queue and

are able to be moved to the stack by the event loop once the stack is cleared. There is also a
render queue that tries to get renders done sixty times per second, but renders can’t happen if

there is anything in the JavaScript call stack.

Jenna Zeigen • @zeigenvector

Rendering
Here’s to never ending circles
And building them on top of me
And here's to another no, man

You won’t get a render
You won’t get a render

♪♪♪

That’s why nothing can render when you’re in an infinite loop, because the call stays on the call

stack, preventing renders from getting initiated.

Jenna Zeigen • @zeigenvector

Rendering

Debounce bounce bounce
bounce bounce bounce
bounce bounce bounce

bounce
♪♪♪

If you’re effecting visual changes via JavaScript, you want to do it at just the right time.
Wrapping your updating function in window.requestAnimationFrame tells the browser that

you wish to perform an animation and requests that the browser call your provided function
before the next repaint. This particularly applies to scroll handlers. Wrapping them in this

function debounces them until the next time there will be a paint.

Jenna Zeigen • @zeigenvector

Rendering
Baby, I'm not always
There when you call,
But I'm always on time
And I gave you my all,

Now baby, be mine
♪♪♪

If the timing of updating where your pixels are on the screen is off, you might drop frames. For

example, if your user is supposed to be perceiving motion, but updates aren’t occurring sixty
times per second, your users will be able to perceive that the motion wasn’t smooth, that the

animations are janky or laggy.

Jenna Zeigen • @zeigenvector

Rendering

Give it away
Give it away
Give it away

Give it away now
♪♪♪

If you’re also doing computationally intensive stuff with your JavaScript that isn’t pushing pixels

around, chances are you can move it to a Web Worker. Web workers are a way for you to run
JavaScript in background threads. Web Workers are pretty versatile, but they do have some

limitations. They don’t have access to the DOM, so you cannot do any DOM manipulation
within them. They also don’t have access to some of the things that live on the window object,

but you do have access to some, like the Cache, WebSockets, XMLHttpRequest and fetch, and
even WebGL.

Jenna Zeigen • @zeigenvector

Rendering

When what you have
Will take too long

Move along, move along
Like I know you do

♪♪♪

As I mentioned, any JavaScript computations on the browser’s main thread have to complete
within 16ms to ensure an unblocked next paint. Moving things that might take longer of the

main thread so they aren’t gumming up the crucial call stack allows this to better happen.

Jenna Zeigen • @zeigenvector

Rendering
I, I, I, I, I, I

Know how to transform
I transform, I transform

I'm a transformer
I, I, I, I, I, I

Know how to transform
I transform (I can do it!)

I'll transform (I can do it!)
I'm a transformer

♪♪♪

If you need to move something or make it disappear, use transform and opacity, as opposed to

position and display. This is because these properties can be handled by the compositor alone.
Compositing, the last step in rendering, does not require a re-layout or a re-paint, which are

expensive operations. On the other hand, positioning and display, require a re-layout, and
subsequently a re-paint and re-composite.

The caveat here is that the element which these properties are changed on need to be in its

own compositor layer. You can do this by adding will-change: transform to a moving
element’s list of properties. Use this magic sparingly, because there is a memory hit from

maintaining each layer, which is particularly pricey on devices with limited memory such as

Jenna Zeigen • @zeigenvector

HTTP/2
How you gonna upgrade me?

What's higher than one point one?
♪♪♪

HTTP/2 is a new HTTP specification that grew out of Google’s work on SPDY (“speedy”). It

serves to fix a bunch of the aspects of HTTP/1.1 that we need to optimize around all the time.
So, once HTTP/2 is implemented across the board, most the of the optimizations discussed will

be obsolete. Features include:
• HTTP header compression (no repeated headers being passed back and forth)
• Multiplexing (Allows the browser to fire off several requests at the same time on the same

connection and receive responses asynchronously)
• Server push technologies (sends assets with the HTML, because it knows you’re gonna need

it)
• Loading page elements in parallel over a single TCP connection

Jenna Zeigen • @zeigenvector

1. IP Address Lookup
2. Opening a socket
3. Security Stuff
4. HTTP Request
5. Server Things
6. HTTP Response
7. Parsing
8. Rendering

Overview

General
• What Happens When (Github)

Transport
• DNS (Wikipedia)
• UDP (Wikipedia)
• TCP (Wikipedia)
• TLS (Wikipedia)

Parsing, Rendering, and Painting
• How Browsers Work (HTML5 Rocks)
• Marja Hölttä: Parsing JavaScript - better lazy than eager? (JSConf EU 2017)
• Franziska Hinkelmann: JavaScript engines - how do they even? (JSConf EU 2017)
• Critical Rendering Path (Google Developers)
• True Grit: Debugging CSS & Render Performance (Google I/O 2013)
• Accelerated Rendering in Chrome: The Layer Model (HTML5 Rocks)

Jenna Zeigen • @zeigenvector

Resources

Jenna Zeigen • @zeigenvector

Resources
Performance

• Best Practices for Speeding Up Your Web Site (Yahoo Developer Network)
• Raul Fraile: How GZIP compression works (JSConfEU 2014)

HTTP/2
• Andy Davies: The Case for HTTP/2 (TXJS 2015)

Jenna Zeigen • @zeigenvector

Complete Tracklist
Carly Rae Jepsen - Call Me Maybe
Radiohead - Creep
Taylor Swift - Blank Space
Taylor Swift - We Are Never Ever Getting Back Together
Taylor Swift - Wildest Dreams
Sarah McLachlan - I Will Remember You
Aretha Franklin - R-E-S-P-E-C-T
Alanis Morrisette - Hand In My Pocket
The Supremes & The Four Tops - The Bigger You Love, The Harder You Fall
Capital Cities - Safe and Sound
Adele - Hello
Biz Markie - Just A Friend
Imagine Dragons - Demons
Young Chris – Racks
Beastie Boys - So What'cha Want
Gotye - Somebody That I Used To Know
The Beatles - All My Lovin’
Rihanna - Work
The Temptations - My Girl
Missy Elliot - Work It
Usher - Confessions, Pt. II
The Beatles - You Know My Name (Look Up The Number)
Calvin Harris ft. Ellie Goulding - Outside

♪♪♪

Jenna Zeigen • @zeigenvector

*something
witty about a
POP server…*

Complete Tracklist (continued)
Jimmy Eat World - Sweetness
The Notorious B.I.G. – Sky's The Limit
MC Hammer - U Can't Touch This
Shakira - Whenever, Wherever
Meghan Trainor - All About That Bass
The Police - Message in a Bottle
Rilo Kiley - The Execution of All Things
Mary J Blige - Not Loving You
Pitbull ft. Ke$ha - Timber
The Beatles - Come Together
Jack Johnson - Better Together
Daft Punk – Harder, Better, Faster, Stronger
Taylor Swift - Blank Space (yes, again…)
Cher - Believe
OutKast - Hey Ya
Blink 182 - All The Small Things
Sia - Cheap Thrills
Beyoncé - Love on Top
Drake - Started from the Bottom
Miley Cyrus - We Can’t Stop
Spice Girls - Stop
Snoop Dogg & Wiz Khalifa ft. Bruno Mars - Young, Wild, & Free
Taylor Swift - Style

Jenna Zeigen • @zeigenvector

Complete Tracklist (continued)
Mika - Relax, Take it Easy
Britney Spears - Till the World Ends
Flo Rida - Low
R. Kelly - Ignition
Enya - Only Time
Semisonic - Closing Time
Counting Crows - Mr. Jones
The Cranberries - Zombie
Taking Back Sunday - Cute Without the E
Taylor Swift - Shake It Off
Imagine Dragons - Radioactive
Ellie Goulding - Burn
Peter Gabriel - In Your Eyes
Salt-N-Pepa - Shoop
CHVRCHES - Never Ending Circles
R. Kelly - Ignition (yeah, again)
Ja Rule ft. Ashanti - On Time
Red Hot Chili Peppers - Give it Away
The All-American Rejects - Move Along
Gnarls Barkley - Transformer
Beyoncé - Upgrade U

♪♪♪

Jenna Zeigen • @zeigenvector

Thanks!

