
Several Components are
Rendering

Jenna Zeigen
QCon NY
6/13/2023

Client Performance at Slack-Scale

Or, how Slack’s been
making the app perform…

Swiftly

Staff Software Engineer
on Slack’s Client Performance Infrastructure Team

jenna.is/at-qcon-ny

@zeigenvector

Performance?!
What? 
Make the app go fast! 💨

How? 
Doing less work! 🛑

Why? 
✨ So our users have a great experience! ✨

First some stuff
about Slack

Slack, a React app on your Desktop

Now, some stuff about
browsers

How Do Browsers Even?
tl;dr you (might) have 16ms to do all your work before the next paint

+

document

html

head body

divtitle

h1 p

“Kitties!” “Cats!”

body

div

h1 p

font-size: 16px

font-size: 16px
font-weight: bold

font-size: 16px
color: blue

font-size: 16px
float: left

=

RenderView

Scroll

Block

Block

Block

Block Block

Text Text

DOM CSSOM Render Tree

How Do Browsers Even?
tl;dr you (might) have 16ms to do all your work before the next paint

Layout Painting Compositing

RenderView

Scroll

Block

Block

Block

Block Block

Text Text

🎶
Cause the render’s gotta rend, rend, rend?
And the painter’s gotta paint, paint, paint

And the compositor’s gotta composite,
composite, composite

🎶

How Do Browsers Even?
tl;dr JavaScript is single threaded

⚛ All JavaScript goes onto the call stack

⚛ Synchronous calls go right on

⚛ Async callbacks, i.e. event handlers, get thrown into a callback queue and

are moved to the stack by the event loop once the stack is cleared

⚛ The browser won’t complete a repaint if there’s anything on the JavaScript

stack

⚛ ✨ If your JavaScript takes longer than 16ms to run, you can end up with

dropped frames and laggy inputs ✨

Performance, a UX Perspective
According to Google’s RAIL model:
⚛ Respond to user actions within 100ms, or they start feeling it
⚛ Make sure you process actions within 50ms to give time for other work

⚛ Produce an animation frame in 16ms, or you drop frames and block the loop
and animations start to feel choppy
⚛ Have the setup done in 10ms, since browsers need ~6ms to actually render

the frame

Source: https://web.dev/rail/

Another Note About Frontend Performance
“In my experience the application is rarely reengineered unless the inefficiency is
egregious and the fix is easy and obvious” 
 - Bob Wescott, The Every Computer Performance Book

✨ On the frontend, we’re running code on other people’s computers.
It’s all re-engineering for us! ✨

🎶
You don't know about me
But I'll bet you want to

Everything will be alright if
You just keep coding like I’m an M2 (jk)

🎶

And now, a Primer on
React and Redux

React and Redux 101
⚛ React is a popular, well-maintained,

easy-to-use component-based UI
framework that promotes modularity by
letting engineers write their markup and
JavaScript side-by-side

⚛ Components get data as “props” or store
data in component state

⚛ Changes to props or component state
cause components to re-render

import { getImageUrl } from './utils.js';

function Avatar({ person, size }) {
 return (
 <img
 className="avatar"
 src={getImageUrl(person)}
 alt={person.name}
 width={size}
 height={size}
 />
);
}

<Avatar
 size={100}
 person={{
 name: 'Taylor Swift',
 imageId: '1989'
 }}
/>

Source: https://react.dev/learn/passing-props-to-a-component

https://react.dev/learn/passing-props-to-a-component
https://react.dev/learn/passing-props-to-a-component

React and Redux 101
⚛ Redux is a state-management library

that can be used to supplement
component state with a central store that
components “connect” to

⚛ Data is read from Redux via “selectors”
which aide in computing connected
props

import { getImageUrl } from './utils.js';

function Avatar({ id, size }) {
const person = useSelector((state) =>
 getPersonById(state, id));

 return (
 <img
 className="avatar"
 src={getImageUrl(person)}
 alt={person.name}
 width={size}
 height={size}
 />
);
}

<Avatar
 size={100}
 id={'1989'}
/>

Source: https://react.dev/learn/passing-props-to-a-component

https://react.dev/learn/passing-props-to-a-component
https://react.dev/learn/passing-props-to-a-component

The “Redux Loop”
Channel
Name

Channel
Name

Channel
Name

Huddle
Button

Channel
Name

Channel
NameChannel

Name

Channel
Name

Message
Input

Channel
Sidebar

Message

Message

Message

Message Message
Emoji

Emoji

Emoji

Emoji

Channel
Name

The “Redux Loop”
Channel
Name

Channel
Name

Channel
Name

Huddle
Button

Channel
Name

Channel
NameChannel

Name

Channel
Name

Message
Input

Channel
Sidebar

Message

Message

Message

Message Message
Emoji

Emoji

Emoji

Emoji

Channel
Name

Actions are dispatched to
Redux, causing “reducers” to

run, which updates Redux
state

💬

The “Redux Loop”
Channel
Name

Channel
Name

Channel
Name

Huddle
Button

Channel
Name

Channel
NameChannel

Name

Channel
Name

Message
Input

Channel
Sidebar

Message

Message

Message

Message Message
Emoji

Emoji

Emoji

Emoji

Channel
Name

💬
💬

Actions are dispatched to
Redux, causing “reducers” to

run, which updates Redux
state

The “Redux Loop”
Channel
Name

Channel
Name

Channel
Name

Huddle
Button

Channel
Name

Channel
NameChannel

Name

Channel
Name

Message
Input

Channel
Sidebar

Message

Message

Message

Message Message
Emoji

Emoji

Emoji

Emoji

Channel
Name

Redux sends out the
notification to every

connected component

The “Redux Loop”
Channel
Name

Channel
Name

Channel
Name

Huddle
Button

Channel
Name

Channel
NameChannel

Name

Channel
Name

Message
Input

Channel
Sidebar

Message

Message

Message

Message Message
Emoji

Emoji

Emoji

Emoji

Channel
Name

Everything connected to
Redux checks if state has

changed, and if so,
recalculates connected props

to see if any values have
changed

The “Redux Loop”
Channel
Name

Channel
Name

Channel
Name

Huddle
Button

Channel
Name

Channel
NameChannel

Name

Channel
Name

Message
Input

Channel
Sidebar

Message

Message

Message

Message Message
Emoji

Emoji

Emoji

Emoji

Channel
Name

Components with changed
props will re-render

The “Redux Loop”

StoreActions Reducers

Components

API Handlers

subscribe

dispatch

💬
💬

📝 🧠

🖼

☎

Ok, how does this go
wrong and cause
performance issues?

Redux Loop Time is Too Damn High
Ideally, we’d be doing all Redux work within an animation frame so we’re not
dropping frames and blocking inputs, but… we’re not there yet!

Papercuts?

🎶
I can’t pretend it’s okay when it’s not

It’s death by a thousand cuts
🎶

Where Does Performance Break Down
1. Every change to Redux results in a Redux notification firing

2. Spending too long running selectors

3. Spending too long re-rendering components (unnecessarily)

How this happens:
⚛ We store most of our data in Redux, which means lots of updates

⚛ API calls, websocket events, user interactions all cause a subscriber

notification

⚛ Every time you switch channels

⚛ Every time you send a message

⚛ Every time you receive a message

⚛ Every time someone reactjis on a 

message in a channel you’re in

⚛ Every time someone updates their 

custom status

⚛ …

Shouty Redux

🎶
Ooh, look what you made me do

Look what you made me do
Look what you just made me do
Look what you just made me...

🎶

So Many Selectors, So Little Time!
How this happens:
⚛ ✨ Every connection runs every time Redux notifies ✨
⚛ Practically, 5,000 to 25,000 connected props being calculated per loop

🎶
You need to calm down
You're being too loud

And I'm just like oh-oh, oh-oh
You need to just stop

Like, can you just not send out that shout?
You need to calm down

🎶

Unnecessary Re-Renders
Many components receive or calculate props that fail equality checks
but are deep-equal (i.e. are “unstable”)
How this happens:
⚛ Calculating a prop via by map/filter/reduce/etc

⚛ Returning [] or {} from a calculation as a default

⚛ Passing anonymous functions as callbacks

⚛ And more!

🎶
And frameworks like me wanna believe you

When you say you've changed
The more I think about it now, the less I know

All I know is that you like to crow
🎶

Cool, how are we
making it better?

Doing Less Work!

Thanks!

Thanks! (lol jk)😂

Doing Less Work!!!!

1. Targeting Problem Components
2. Broad-Spectrum Solutions

1. Targeting Problem Components

Any Guesses? 🤔

The Channel Sidebar

🎶
It’s me, hi, I’m the problem, it’s me

🎶

A Sidebar About Performance
The sidebar looks like a simple list of channels with some icons and headers…

// simplified code :)
<ChannelSidebar>

<Icon /><ViewName />
<Icon /><ViewName />
<Icon /><ViewName />
<Icon /><ViewName />
<Icon /><ShowMore />

<Icon /><SectionHeading /><Icon />
<ChannelIcon /><ChannelName />
<ChannelIcon /><ChannelName />
<ChannelIcon /><ChannelName /><NotificationBadge />
<ChannelIcon /><ChannelName /><Icon />

<Icon /><SectionHeading />
<PresenceIcon /><ChannelName />
<PresenceIcon /><ChannelName />
<PresenceIcon /><ChannelName />

</ChannelSidebar>

A Sidebar About Performance
…but it’s so much more

Redux and React work to render the sidebar (~100ms)
Calculating

what to
render

(~15ms)

Total:
~115ms

Sooo Many Selectors…
⚛ 20,000 selector calls drops to 2,000 when the sidebar is hidden

⚛ Inefficiencies in lists compound quickly

⚛ 40 connected prop calculations in the channel sidebar item component,

times however many channels in your sidebar…

🎶
It's born from just one single update
But it runs, and it runs, and it runs

A million little times
🎶

… But Many of Them Are Unnecessary!
Biggest issue was repeated work:
⚛ Checking if users were in experiments

⚛ Getting the Logger instance

Also unnecessary work:
⚛ DMs needed data public and private channels didn’t

⚛ Channels needed data DMs didn’t

⚛ Straight-up unused component props

… But Many of Them Are Unnecessary!
Some solutions
⚛ Moving repeated work to the list level (call ‘em once instead of n times!)

⚛ Creating more specialized components

⚛ Deleting unused props (lol)

A Sidebar About Performance
And now…

Redux and React work to render the sidebar (~65ms)
Calculating

what to
render

(~15ms)

Total:
~80ms

~30% Improvement!

Redux Loop time overall saw improvements just from focusing on this one
component

⚛ 14% improvement at p99

⚛ 13% improvement at p95

⚛ 11% improvement at p50

Impact on Overall Redux Loop Time

🎶
Back when we were still
Changing for the better…

🎶

What’s Next: List Virtualization
⚛ Only render what’s going to be on screen, with a

buffer to allow for smooth scrolling

⚛ Fewer connected components means fewer

selectors firing on every loop

⚛ Tradeoff on scroll speed

List item

List item

List item

List item

List item

List item

List item

List item

List item

List item

List item

List item

List item

List item

List item

List item

List item

List item

View
port

What’s Next: State Shapes and Storage
⚛ We store data like it’s the backend, but we have different needs

⚛ How should we store data so it serves our UI better and reduces time doing

expensive calculations on every loop?

⚛ Why do we store channels you’re a member of alongside those you’re not?

⚛ Why do we recalculate every section on every loop from scratch?

2. Broad-Spectrum Solutions

Batched Updates
Invoking the Redux subscriber notification on the animation frame by using
ReactDOM.unstable_batchedUpdates

// simplified code :)
import { createStore } from 'redux';
import { batchedSubscribe } from 'redux-batched-subscribe';

const invokeOnNextAnimationFrame = (func: Function) => {
 callbacks.push(func);
 if (!requestId) {
 requestId = requestAnimationFrame(() => {
 ReactDOM.unstable_batchedUpdates(invokeAllCallbacks);
 });
 }
 return requestId;
};

const store = createStore(reducer, initialState, batchedSubscribe(invokeOnNextAnimationFrame));

“batch signal?”

Performance problems can be detected and fixed at the AST level?!

⚛ “Hoisting” static unstable props being passed to children

⚛ Re-writing prop calculations in a way that facilitates memoization

⚛ Replacing unstable empty values with constants like EMPTY_OBJECT

Codemods

🎶
Remember when props failed equality?

I wrote code, I said "I'm making you free"
The monsters turned out to be just trees

Amazing what you can do with an AST
🎶

Using Redux Less?
⚛ Investigating using IndexedDB to store more evicted items

⚛ Less data in Redux means fewer loops as a result of keeping items fresh

⚛ Cache eviction is fun, but have you tried not storing it in the first place?

⚛ Finer-grained subscription would be cool, but it’s a departure from the Redux

model

🎶
Band-aids don't fix bullet holes

You say sorry just for show
If you live like that, you live with ghosts
If you code like that, your app runs slow!

🎶

Okay big question…
Why still use Redux?

“React is a popular, well-maintained, easy-to-use component-based UI
framework that promotes modularity”

- Me, about 30 minutes ago

✨ Is the cost of drastically changing our architecture worth it for the
performance boosts? ✨

Why React and Redux, Still?

🎶
So, it's gonna be forever

Or it's gonna go down in flames?
You can tell me when it's over, mm

If the high was worth the pain
🎶

⚛ Performance has been built up as a problem for the experts, often
surrounded by an air of hero culture, but we’re doing ourselves a
disservice by keeping it an inaccessible discipline

⚛ A distributed solution for a problem of scale!

⚛ ✨ Engineers fundamentally want to create performant software, so let’s

give them the tools to set them up for success ✨

Fighting A Problem of Scale at Scale

🎶
Everybody here wanted somethin' more

Searchin' for a speed we hadn't had before
🎶

React and Redux abstract away internals but understanding the system
contextualizes and motivates performance work

Education and Evangelism

Lint Rules
Show engineers right in their editor when they’re writing code that’s a
performance liability

⚛ Unstable props being passed to children

⚛ i.e. react-perf/jsx-no-new-object-as-prop

⚛ Unstable props being computed for connected components

⚛ Functions and values that break memoization but don’t have to

🎶
But I got smarter, I got harder in the nick of time
Honey, I read all of your code, I do it all the time

I got a list of props, and yours is in red, underlined
I check it once, then I check it twice, oh!

🎶

Runtime Console Warnings
Warnings in the Chrome console for performance opportunities best caught at
runtime, such as:

⚛ Unstable connected prop calculations
⚛ Checks for finished experiments

🎶
I found a blank list, baby

Consider EMPTY_ARRAY!
🎶

Education Equals Empowerment
Empowering engineers to fix performance issues as they build their features

⚛ Wrap components in React.memo to skip re-rendering if props are equal

⚛ Use EMPTY_ARRAY and EMPTY_OBJECT in place of unstable [] and {}
⚛ Our homegrown useShallowEqualSelector hook gives you another layer

of equality check if you need

⚛ useCallback and useMemo stabilize props passed 

from function components to children

🎶
Memoizing it is as easy as knowing all the words

To your old favorite song!
🎶

And, a Burndown Program
It’s called Project Rollercoaster (making the Loops go fast!)

😅 🤓

🎶
As far as I'm concerned, you're just

Another picture to burn
Burn, burn, burn, baby, burn
Just another picture to burn

Baby, burn
🎶

It takes
a lot of work
to do less work.

Thanks!
jenna.is/at-qcon-ny
@zeigenvector

